<polite session> https://usafacts.org/visualizations/covid-vaccine-tracker-states/state/minnesota
User-agent: polite R package
robots.txt: 4 rules are defined for 1 bots
Crawl delay: 5 sec
The path is scrapable for this user-agent
STAT 220
<polite session> https://usafacts.org/visualizations/covid-vaccine-tracker-states/state/minnesota
User-agent: polite R package
robots.txt: 4 rules are defined for 1 bots
Crawl delay: 5 sec
The path is scrapable for this user-agent
Click here to take a look at the webpage
bow(url = "https://usafacts.org/visualizations/covid-vaccine-tracker-states/state/minnesota") %>%
scrape()
{html_document}
<html lang="en">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
[2] <body>\n<div id="root">\n<div class="MuiContainer-root MuiContainer-disab ...
Click here to take a look at the webpage
Click here to take a look at the webpage
bow(url = "https://usafacts.org/visualizations/covid-vaccine-tracker-states/state/minnesota") %>%
scrape() %>%
html_elements(css = "table") %>%
html_table()
[[1]]
# A tibble: 51 × 4
State % of population with…¹ `% fully vaccinated` % with booster or ad…²
<chr> <chr> <chr> <chr>
1 Alabama 64.3% 52.5% 20.1%
2 Alaska 72% 64.4% 30.8%
3 Arizona 76.4% 63.8% 29.4%
4 Arkansas 68.8% 56.1% 24%
5 California 85.2% 74.2% 41.5%
6 Colorado 82.2% 72.4% 40.5%
7 Connectic… >95%* 81.8% 44.3%
8 Delaware 86.3% 71.8% 35.4%
9 District … >95%* 82.1% 37.9%
10 Florida 81.4% 68.6% 29.4%
# ℹ 41 more rows
# ℹ abbreviated names: ¹`% of population with at least one dose`,
# ²`% with booster or additional dose`
Click here to take a look at the webpage
bow(url = "https://usafacts.org/visualizations/covid-vaccine-tracker-states/state/minnesota") %>%
scrape() %>%
html_elements(css = "table") %>%
html_table() %>%
pluck(1)
# A tibble: 51 × 4
State % of population with…¹ `% fully vaccinated` % with booster or ad…²
<chr> <chr> <chr> <chr>
1 Alabama 64.3% 52.5% 20.1%
2 Alaska 72% 64.4% 30.8%
3 Arizona 76.4% 63.8% 29.4%
4 Arkansas 68.8% 56.1% 24%
5 California 85.2% 74.2% 41.5%
6 Colorado 82.2% 72.4% 40.5%
7 Connectic… >95%* 81.8% 44.3%
8 Delaware 86.3% 71.8% 35.4%
9 District … >95%* 82.1% 37.9%
10 Florida 81.4% 68.6% 29.4%
# ℹ 41 more rows
# ℹ abbreviated names: ¹`% of population with at least one dose`,
# ²`% with booster or additional dose`
Click here to take a look at the webpage
Click here to take a look at the webpage
Click here to take a look at the webpage
all_url <- "https://finance.yahoo.com/screener/predefined/day_gainers?count=25&offset="
idx <- seq(0, 1050, by = 25)
read_html(str_glue("{all_url}{idx[1]}"))
{html_document}
<html data-color-theme="light" id="atomic" class="NoJs desktop" lang="en-US">
[1] <head prefix="og: https://ogp.me/ns#">\n<meta http-equiv="Content-Type" c ...
[2] <body>\n<div id="app"><div class="fin-neo neo-green " data-reactroot="">< ...
Click here to take a look at the webpage
all_url <- "https://finance.yahoo.com/screener/predefined/day_gainers?count=25&offset="
idx <- seq(0, 1050, by = 25)
read_html(str_glue("{all_url}{idx[1]}")) %>%
html_table()
[[1]]
# A tibble: 25 × 10
Symbol Name `Price (Intraday)` Change `% Change` Volume `Avg Vol (3 month)`
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 TDS Telep… 19.7 4.38 +28.63% 9.41M 1.156M
2 SITM SiTim… 124. 27.4 +28.29% 840,9… 235,838
3 USM Unite… 46.0 9.96 +27.67% 2.295M 272,445
4 ZLAB Zai L… 21.0 4.44 +26.80% 3.667M 651,411
5 ARHS Arhau… 15.5 2.28 +17.25% 2.718M 1.258M
6 DJTWW Trump… 22.3 2.86 +14.70% 333,1… 408,140
7 PLTK Playt… 8.87 1.12 +14.45% 2.701M 1.102M
8 APP AppLo… 84.7 10.7 +14.45% 15.11… 4.611M
9 UPST Upsta… 26.2 3.06 +13.24% 10.21… 5.638M
10 GME GameS… 18.0 2.09 +13.13% 24.82… 6.537M
# ℹ 15 more rows
# ℹ 3 more variables: `Market Cap` <chr>, `PE Ratio (TTM)` <chr>,
# `52 Week Range` <lgl>
Click here to take a look at the webpage
all_url <- "https://finance.yahoo.com/screener/predefined/day_gainers?count=25&offset="
idx <- seq(0, 1050, by = 25)
read_html(str_glue("{all_url}{idx[1]}")) %>%
html_table() %>%
purrr::pluck(1)
# A tibble: 25 × 10
Symbol Name `Price (Intraday)` Change `% Change` Volume `Avg Vol (3 month)`
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 TDS Telep… 19.7 4.38 +28.63% 9.41M 1.156M
2 SITM SiTim… 124. 27.4 +28.29% 840,9… 235,838
3 USM Unite… 46.0 9.96 +27.67% 2.295M 272,445
4 ZLAB Zai L… 21.0 4.44 +26.80% 3.667M 651,411
5 ARHS Arhau… 15.5 2.28 +17.25% 2.718M 1.258M
6 DJTWW Trump… 22.3 2.86 +14.70% 333,1… 408,140
7 PLTK Playt… 8.87 1.12 +14.45% 2.701M 1.102M
8 APP AppLo… 84.7 10.7 +14.45% 15.11… 4.611M
9 UPST Upsta… 26.2 3.06 +13.24% 10.21… 5.638M
10 GME GameS… 18.0 2.09 +13.13% 24.82… 6.537M
# ℹ 15 more rows
# ℹ 3 more variables: `Market Cap` <chr>, `PE Ratio (TTM)` <chr>,
# `52 Week Range` <lgl>
Click here to take a look at the webpage
all_url <- "https://finance.yahoo.com/screener/predefined/day_gainers?count=25&offset="
idx <- seq(0, 1050, by = 25)
read_html(str_glue("{all_url}{idx[1]}")) %>%
html_table() %>%
purrr::pluck(1) %>%
janitor::clean_names()
# A tibble: 25 × 10
symbol name price_intraday change percent_change volume avg_vol_3_month
<chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
1 TDS Telephone… 19.7 4.38 +28.63% 9.41M 1.156M
2 SITM SiTime Co… 124. 27.4 +28.29% 840,9… 235,838
3 USM United St… 46.0 9.96 +27.67% 2.295M 272,445
4 ZLAB Zai Lab L… 21.0 4.44 +26.80% 3.667M 651,411
5 ARHS Arhaus, I… 15.5 2.28 +17.25% 2.718M 1.258M
6 DJTWW Trump Med… 22.3 2.86 +14.70% 333,1… 408,140
7 PLTK Playtika … 8.87 1.12 +14.45% 2.701M 1.102M
8 APP AppLovin … 84.7 10.7 +14.45% 15.11… 4.611M
9 UPST Upstart H… 26.2 3.06 +13.24% 10.21… 5.638M
10 GME GameStop … 18.0 2.09 +13.13% 24.82… 6.537M
# ℹ 15 more rows
# ℹ 3 more variables: market_cap <chr>, pe_ratio_ttm <chr>,
# x52_week_range <lgl>
Click here to take a look at the webpage
all_url <- "https://finance.yahoo.com/screener/predefined/day_gainers?count=25&offset="
idx <- seq(0, 1050, by = 25)
read_html(str_glue("{all_url}{idx[1]}")) %>%
html_table() %>%
purrr::pluck(1) %>%
janitor::clean_names() %>%
mutate(across(everything(), as.character)) # for consistent data joins
# A tibble: 25 × 10
symbol name price_intraday change percent_change volume avg_vol_3_month
<chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 TDS Telephone… 19.68 4.38 +28.63% 9.41M 1.156M
2 SITM SiTime Co… 124.34 27.42 +28.29% 840,9… 235,838
3 USM United St… 45.95 9.96 +27.67% 2.295M 272,445
4 ZLAB Zai Lab L… 21.01 4.44 +26.80% 3.667M 651,411
5 ARHS Arhaus, I… 15.5 2.28 +17.25% 2.718M 1.258M
6 DJTWW Trump Med… 22.32 2.86 +14.70% 333,1… 408,140
7 PLTK Playtika … 8.87 1.12 +14.45% 2.701M 1.102M
8 APP AppLovin … 84.69 10.69 +14.45% 15.11… 4.611M
9 UPST Upstart H… 26.17 3.06 +13.24% 10.21… 5.638M
10 GME GameStop … 18.01 2.09 +13.13% 24.82… 6.537M
# ℹ 15 more rows
# ℹ 3 more variables: market_cap <chr>, pe_ratio_ttm <chr>,
# x52_week_range <chr>
Click here to take a look at the webpage
all_url <- "https://finance.yahoo.com/screener/predefined/day_gainers?count=25&offset="
idx <- seq(0, 1050, by = 25)
my_df <- map_df(idx, ~ {
new_webpage <- read_html(str_glue("{all_url}{.x}"))
table_new <- html_table(new_webpage)[[1]] %>%
janitor::clean_names() %>%
mutate(across(everything(), as.character))
return(table_new)
})
ca17-yourusername
repository from Github10:00
df_movies %>%
mutate(
ID = row_number(),
ProductionBudget = parse_number(ProductionBudget),
DomesticGross = parse_number(DomesticGross),
WorldwideGross = parse_number(WorldwideGross),
ReleaseDate = mdy(ReleaseDate),
MonthOfRelease = month(ReleaseDate, label = TRUE, abbr = TRUE),
YearOfRelease = year(ReleaseDate)
) %>%
replace_na(list(ReleaseDate = make_date(year = 1900))) %>%
group_by(MonthOfRelease) %>%
summarize(AverageByMonth = mean(DomesticGross, na.rm = TRUE)) ->
df_DomesticGross_month
library(plotly)
fig <- df_DomesticGross_month %>%
plot_ly(labels = ~MonthOfRelease, values = ~AverageByMonth)
fig <- fig %>% add_pie(hole = 0.6)
fig <- fig %>% layout(title = "Average Domestic Gross by Month",
showlegend = F,
xaxis = list(showgrid = FALSE,
zeroline = FALSE,
showticklabels = FALSE),
yaxis = list(showgrid = FALSE,
zeroline = FALSE,
showticklabels = FALSE))
fig